Numerical Simulation of Event 191-6 of NASA's Flight Tests

Fred H. Proctor and David W. Hamilton

NASA Langley Research Center

Hampton Virginia

Session: Airborne Turbulence Warning System
Weather Accident Prevention Annual Project Review
5-7 June 2001, Cleveland, Ohio

Outline

- Introduction
- Description of Turbulence Event
- TASS Model
- Initial Conditions
- Results from Model Simulation
- Summary

Introduction

- Numerical Simulation of Event 191-6
- Severe Turbulence Encountered by NASA Langley B-757 during Event 191-6
- Occurred as B-757 Penetrated Updraft Plumes Near Storm Top
- Data Available for Model Validation
 - Ground Based Radar (i.e. Nexrad)
 - Satellite
 - NASA B-757
 - In Situ Winds and Accelerations
 - Onboard Doppler Radar
 - Eyewitness Accounts

R – 191-6 December 14, 2000

- Severe turbulence encountered Approximately 40 km ENE of Tallahassee FL
- Narrow line of convective cells
 - Peak storm tops: 39,000 ft (11.8 km)
 - Cell movement: from southwest at 40 kts
- 2 significant turbulence events with peak in situ measurement:
 - $-\sigma_{\Delta n} = 0.44$
 - $-\epsilon^{1/3} = 0.84$

1 km Visible Satellite 1845 Z December 14, 2000

Flight Path – RMS Normal Loads

MODELING ROADMAP

- Step 1: Derive initial sounding based on mesoscale model prediction; configure domain; retrieve and prepare observed data for case verification.
- Step 2: Coarse-grid simulation: should capture large scale characteristics of storm: 125x125x70 grid points with horizontal grid size of 200 m
- Step 3: Fine-grid simulation: 250x250x150 grid points, with grid size of 100 m
- Step 4: Nested grid simulation
 - 5 km region near cloud top
 - Minimum grid size less than 25 m.
 - Validate results

TERMINAL AREA SIMULATION SYSTEM (TASS)

- 3-D Large Eddy Simulation (LES) Model
- Meteorological Framework
- Prognostic Equations for:
 - 3-Components of Velocity
 - Potential Temperature
 - Water Vapor
 - Liquid Cloud Droplets
 - Cloud Ice Crystals

- Pressure
- Rain
- Snow
- Hail/graupel
- Dust/insects/tracers
- 1st-order subgrid turbulence closure with Richardson-number dependency
- Surface friction layer based on Monin-Obukhov similarity theory
- Cloud microphysics

TASS -- History

- Development began in 1983 for NASA/FAA Windshear Program
- Recently applied in NASA's Wake Vortex Program for improving airport capacity (i.e. AVOSS)
- Generation of data sets for Windshear Sensor Certification
- Supported NTSB Investigation of 1994 Charlotte and 1999 Little Rock Aircraft Accidents
- Simulations Applied to:
 - Cumulonimbus Convection
 - Tornadic Storms & Supercell Hailstorms
 - Microbursts & Microburst Producing Storms
 - Reconstruction of Microburst Windshear Encounters
 - Aircraft Wake Vortices
 - Atmospheric Boundary Layer
 - Flight Turbulence

R-191-6, 14 Dec 2000, Near Tallahassee FL

TASS Domain Configuration

Physical Domain size

- Horizontal (X, Y): 25 x 25 km
- Vertical (Z): 14 km

Domain orientation and lateral boundary conditions

- Domain rotated 66° clockwise:
 - X coordinate orthogonal to convective line
 - Y coordinate along line
- Lateral BC:
 - Periodic boundary at Y= {0, X*},
 - Open at X= {0, Y*}
- Computational resolution
 - Horizontal 100 m (251 x 251 grid points); can resolve horizontal scales down to 400-200 m
 - Vertical 100 m, stretched grid at Z<2100 m with grid size decreasing to 50 m at Z=0 (148 levels)

Flight 191 – Path with Nowrad

TASS Simulation of Event 191-6, 14 Dec 2000

TASS Input Data

Input Sounding

- Environmental winds, temperature, dewpoint, & pressure
- From MASS 6-km forecast at time & location near event
- Boundary layer temperature & moisture from TLH observation

Convection initiated at model time zero

- Spheroidal thermal impulse
 - Peak amplitude 2.0° C
 - Dimensions 4 km horizontal x 2.1 km vertical

MASS Surface Precipitation

MASS TLH sounding

TASS Simulation of Event 191-6, 14 Dec 2000

Simulated Storm Characteristics

- Near solid line of convection
- Overshooting tops to 11.5 km (38,000 ft)
- Cell motion: 19 m/s (37 kts)
- Moderate rainfall at surface (no hail)
- Persistent multi-cell type convection
- Turbulence associated with storm tops
- Cloud top rise rates about 10 12 m/s (30-40 ft/s)

Variable	TASS		Observed	
Peak Storm Tops	11.5 <i>km</i>		11.8 <i>km</i>	
Peak Radar Reflectivity at Ground	53.5 <i>dBz</i>		55 <i>dBz</i>	
Peak Radar Reflectivity at z=9 km	38.9 <i>dBz</i>		40 <i>dBz</i>	
Cell Motion (toward)	ENE at 19 <i>m/s</i>		ENE at 17 <i>m</i> /s	
Width of Convective Line near Ground Level (based on 20 dBz)	6 <i>km</i>		8 <i>km</i>	
Peak Vertical Velocity at Flight Level (z~10.3 km)	Max 17 <i>m/</i> s	Min -11 <i>m/</i> s	Max 17 <i>m</i> /s [*]	Min -12 <i>m/</i> s*
Peak Eddy Dissipation Rate (m ^{2/3} /s)	0.86		0.8	
Horizontal Scale of Turbulence Patch at Flight Level	5 <i>km</i>		5 <i>km</i>	

On Approach to Convection

TASS Simulation

viewed from northwest (cloud/precipitation surfaces)

TASS Vertical Cross Section of RRF (dBz)

Radar reflectivity near ground (dBz)

TASS Radar Reflectivity at T = 49 min and z= 156 m **>** 35 -15 -10 -5

PPI Display From TLH Nexrad (1.4° tilt)

TASS
(Horizontal Cross Section)
(major tick every 5 km)

Upper-Altitude Structure of Convective Line

PPI Display From TLH Nexrad (9.8° tilt)

TASS
(Horizontal Cross Section at 9 km AGL)

Radar reflectivity from onboard turbulence radar (dBz) at -4° tilt. (Range rings every 4 km)

L. Britt

TASS radar reflectivity (dBz) at 9.3 km altitude corresponding to time and location of echo in previous slide (major ticks every 4 km)

TASS radar reflectivity (dBz) at 10.3 km altitude (major ticks every 4 km)

TASS Eddy Dissipation Rate to the 1/3 power (m^{2/3}/s) at time and location corresponding to previous slide.

Profile 1: Comparison of 100m TASS with In Situ

Profile 2: Comparison of 100m TASS with In Situ

Profile 3: Comparison of 100m TASS with In Situ

FHP-DWH

Summary

- Results from 100 m Simulation Show Excellent Comparison with Observed Data
- Turbulence Associated with Buoyant Plumes in the Thunderstorm Upper-Levels
- Regions of Strong Vertical Velocity Found in Regions with Weak Radar Reflectivity
- Details of Storm Structure Differ From Measurements but Larger-Scale Captured by Simulation

Future/Ongoing Work

- Finer Grid Resolution Needed to Capture Important Scales of Motion that Affect Aircraft Normal Load Accelerations
- Data Set from the Case Delivered to NCAR for Addition of Small-Scale Karman Turbulence
- A Nested-Grid with Grid Size of 25 m to be Applied in Future Simulation

